A Note on the Approximation of Functions of Several Variables by Sums of Functions of One Variable*

C. T. Kelley
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650
Communicated by E. W. Cheney
Received September 28, 1978

For a class of functions of several variables, which includes the continuous functions, we show that there exists a sum of functions of one variable that minimizes the distance from the given function to the space of such sums. For functions of two variables we show that such a minimizing sum may be constructed by an iterative scheme.

I. Introduction

Let $\left\{\Omega_{i}\right\}_{i=1}^{m}$ be compact Hausdorff topological spaces endowed with positive regular Borel measures $\left\{\mu_{i}\right\}_{i-1}^{m}$. Let $\Omega=\Omega_{1} \times \Omega_{2} \times \cdots \times \Omega_{m}$ and $\mu=\mu_{1} \times \mu_{2} \times \cdots \times \mu_{m}$. Let $L_{\infty}(\Omega)$ denote the Banach space of μ-essentially bounded real-valued functions on Ω with the essential supremum norm. Let $S(\Omega)$ denote the subspace of $L_{\infty}(\Omega)$ consisting of sums of the form $\bigcup_{i-1}^{m} \phi_{i}$, with $\phi_{i} \in L_{\infty}\left(\Omega_{i}\right)$.

Let $S(\Omega)$ denote the subspace of $L^{\infty}(\Omega)$ given by

$$
\begin{equation*}
S(\Omega)=\left\{f \in L^{\infty}(\Omega) \mid f(x)=\sum_{k=1}^{m} \phi_{k}\left(x_{k}\right), \phi_{k} \in L^{\infty}\left(\Omega_{k}\right)\right\} \tag{1.1}
\end{equation*}
$$

We show in the Appendix that $S(\Omega)$ is a closed subspace of $L^{\infty}(\Omega)$.
We let $K(\Omega)$ denote the closure in $L_{\infty}(\Omega)$ of the set of all finite sums of the form $\sum_{k=1}^{M} \prod_{j=1}^{m} \phi_{k j}$, where $\phi_{k j} \in L_{\infty}\left(\Omega_{j}\right)$ for $1 \leqslant j \leqslant m$ and $1 \leqslant k \leqslant M$. As products and sums of functions in $L_{\infty}\left(\Omega_{j}\right)$ are also in $L_{\infty}\left(\Omega_{j}\right), K$ is a closed subalgebra of $L_{\infty}(\Omega)$. In fact, $K(\Omega)$ is the smallest closed subalgebra of $L_{,}(\Omega)$ containing $S(\Omega)$. We note that $C(\Omega) \subset K(\Omega)$; here $C(\Omega)$ denotes

[^0]the space of all continuous functions on Ω. For $k \in L_{\alpha}(\Omega)$ we define a functional $\mu(k)$ by
\[

$$
\begin{equation*}
\mu(k)=\inf _{f \in S(\Omega)}\|k-f\| \tag{1.2}
\end{equation*}
$$

\]

In [2], Diliberto and Strauss considered the problem of finding a sequence $\left\{f_{n}\right\} \subset S(\Omega)$ so that $\lim _{n \rightarrow \infty}\left\|k-f_{n}\right\|=\mu(k)$. They were able to do this and for continuous k their sequence possessed a convergent subsequence. In $\|1\|$, Aumann showed that their sequence converged if $m=2$ and k is continuous. The purpose of this note is to extend these results to the case $k \in K(\Omega)$.

The reader should note that $K(\Omega) \neq L_{\infty}(\Omega)$. To see this let $\Omega_{1}=\Omega_{2}=|0,1|$ and let $f\left(x_{1}, x_{2}\right)$ be given by

$$
\begin{align*}
f\left(x_{1}, x_{2}\right) & =1 & & x_{1} \geqslant x_{2} \tag{1.3}\\
& =0 & & x_{1}<x_{2} .
\end{align*}
$$

Then it is easy to see that

$$
\begin{equation*}
\inf _{k \in K(\Omega)}\|f-k\|=\frac{1}{2} \tag{1.4}
\end{equation*}
$$

II

For $k \in L_{\infty}(\Omega)$ and $\mathrm{I} \leqslant j \leqslant m$ define $H_{j}(k) \in L_{\infty}\left(\Omega_{j}\right)$ for μ_{j}-almost every x_{j}, by

$$
\begin{equation*}
H_{j}(k)\left(x_{j}\right)=\frac{1}{2}\left(\underset{\substack{x_{i} \in \Omega_{i} \\ i \neq j}}{\operatorname{ess} \sup } k\left(x_{1}, \ldots, x_{m}\right)+\underset{\substack{x_{i} \in \Omega_{i} \\ i \neq j}}{\operatorname{ess} \inf _{j}} k\left(x_{1}, \ldots, x_{m}\right)\right) . \tag{2.1}
\end{equation*}
$$

The sequence f_{n} of Diliberto and Strauss is defined as follows. Let k_{n} be given by

$$
\begin{align*}
k_{0}= & k, \\
k_{1}= & k_{0}-H_{1}\left(k_{0}\right), \tag{2.2}\\
k_{2}= & k_{1}-H_{2}\left(k_{1}\right), \\
k_{m p+r}= & k_{m p+r-1}-H_{r}\left(k_{m p+r-1}\right), \\
& \text { for } \quad 1 \leqslant r \leqslant m \quad \text { and } p \geqslant 0 .
\end{align*}
$$

We define f_{n} by

$$
\begin{equation*}
f_{n}=k-k_{n} \tag{2.3}
\end{equation*}
$$

The following theorem was proved by Diliberto and Strauss for continuous k. Their proof generalizes directly to the case considered here.

Theorem 2.1. For $k \in L_{x}(\Omega)$, let k_{n} be given by (2.2). Then

$$
\lim _{n \rightarrow \infty}\left\|k_{n}\right\|=\lim _{n \rightarrow 5}\left\|k-f_{n}\right\|=\mu(k)
$$

Moreover, for $n \geqslant 1,\left\|k_{n}\right\| \leqslant\left\|k_{n-1}\right\|$, and hence,

$$
\left\|f_{n}\right\| \leqslant 2\|k\|
$$

We list some obvious properties of the functions $H_{i}(k)$ in the following lemma.

Lemma 2.1. Let $k \in L_{\infty}(\Omega)$ and let i be fixed. Let $\left\{E_{r}\right\}_{r=1}^{R}$ be a partition of Ω_{i} into disjoint measurable sets. Let $\phi \in L_{\infty}\left(\Omega_{i}\right)$ and let $p_{r} \in L_{\infty}(\Omega)$ be independent of x_{i} for $1 \leqslant r \leqslant R$. Then
(a) $H_{i}(k+\phi)=H_{i}(k)+\phi$.
(b) $\left\|k-H_{i}(k)\right\| \leqslant\|k\|$.
(c) $H_{i}(\phi k)=\phi H_{i}(k)$.
(d) $H_{i}\left(\sum_{r=1}^{R} X_{i_{r}} p_{r}\right)=\sum_{r=1}^{R} X_{E_{r}} H_{i}\left(p_{r}\right)$.

In (d). $X_{E_{r}}$ is the characteristic funtion of the set E_{r}.
For $f \in S(\Omega)$, we may write $f=\sum_{i-1}^{m} \phi_{i}$ with $\phi_{i} \in L_{\infty}\left(\Omega_{i}\right)$. This representation is unique in the sense that if $f=\sum_{i=1}^{m} \psi_{i}$, then there are constants δ_{i}, so that $\sum_{i=1}^{m} \delta_{i}=0$ and $\psi_{i}+\delta_{i}=\phi_{i}$. For $f \in S(\Omega)$ as above and $k \in L_{\infty}(\Omega)$ we define $Q_{k}(f)=\sum_{i-1}^{m} q_{i}(f)$, where $q_{i} \in L_{\infty}\left(\Omega_{i}\right)$ is given by

$$
\begin{equation*}
q_{i}(f)=H_{i}\left(k-\bigvee_{j=1}^{i-1} q_{j}-\bigvee_{j=i+1}^{m} \phi_{j}\right) . \tag{2.4}
\end{equation*}
$$

Note that each individual q_{i} depends on the representation $f=\sum_{i=1}^{m} \phi_{i}$. However, $Q_{k}(f)$ does not depend on this representation. Indeed, if $f=\sum_{i=1}^{m}\left(\phi_{i}+\delta_{i}\right)$, where the δ_{i} 's are constants such that $\sum_{i=1}^{m} \delta_{i}=0$, let \hat{q}_{i} be defined by (2.4) with ϕ_{i} replaced by $\phi_{i}+\delta_{i}$. We have $\hat{q}_{1}=H_{1}\left(k-\sum_{i=2}^{m}\left(\phi_{i}+\delta_{2}\right)\right)=H_{1}\left(k-\sum_{i=2}^{m} \phi_{i}\right)-\sum_{i=2}^{m} \delta_{i}=q_{1}+\delta_{1}$. Hence $\hat{q}_{2}=q_{2}-\delta_{1}-\sum_{i=3}^{m} \delta_{i}=q_{2}+\delta_{2}$. Continuing in this way we obtain $\hat{q}_{i}=q_{i}+\delta_{i}$ for all i, and hence $\sum_{i=1}^{m} q_{i}=\sum_{i=1}^{\bar{m}} \hat{q}_{i}$. Note that Q_{k} is a continuous map on $S(\Omega)$.

For $k \in L_{\infty}(\Omega)$, let f_{n} be defined by (2.3). Fix $p \geqslant 0$ and write $f_{m p}=\sum_{i-1}^{m} \phi_{i}$. We have $k_{m p}=k-\sum_{i=1}^{m} \phi_{i}$. Hence

$$
\begin{align*}
k_{m p+1} & =k_{m p}-H_{1}\left(k_{m p}\right) \\
& =k-\sum_{i=1}^{m} \phi_{i}-H_{1}\left(k-\sum_{i=1}^{m} \phi_{i}\right) \\
& =k-\sum_{i=2}^{m} \phi_{i}-H_{1}\left(k-\sum_{i=2}^{m} \phi_{i}\right) \\
& =k-\sum_{i=2}^{m} \phi_{i}-q_{1}\left(f_{m p}\right) . \tag{2.5}
\end{align*}
$$

Continuing we have

$$
\begin{aligned}
k_{m p+2} & =k_{m p+1}-H_{2}\left(k_{m p+1}\right) \\
& =k-\sum_{i=2}^{m} \phi_{i}-q_{1}\left(f_{m p}\right)-H_{2}\left(k-\sum_{i=2}^{m} \phi_{i}-q_{1}\left(f_{m p}\right)\right) \\
& =k-\sum_{i=3}^{m} \phi_{i}-q_{1}\left(f_{m p}\right)-q_{2}\left(f_{m p}\right) .
\end{aligned}
$$

Finally, we obtain,

$$
\begin{equation*}
k_{m p+m}=k-\sum_{i=1}^{m} q_{i}\left(f_{m p}\right)=k-f_{m(p+1)} \tag{2.7}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
f_{m p}=Q_{k}^{p}(0) ; \quad p \geqslant 1 \tag{2.8}
\end{equation*}
$$

Also by Theorem 2.1, for $k \in L_{\infty}(\Omega)$ and $f \in S(\Omega)$, we have

$$
\begin{equation*}
\left\|k-Q_{k}(f)\right\| \leqslant\|k-f\| \tag{2.9}
\end{equation*}
$$

Hence, for each k, Q_{k} maps bounded sets in $S(\Omega)$ into bounded sets in $S(\Omega)$. Moreover, for $p \geqslant 1$

$$
\begin{equation*}
\left\|Q_{k}^{p}(0)-k\right\| \leqslant\|k\| \tag{2.10}
\end{equation*}
$$

Therefore Q_{k} maps the set $B_{k}=\{f \in S(\Omega) \mid\|k-f\| \leqslant 1\}$ into itself and the sequence $\left\{Q_{k}^{p}(0)\right\}_{p=1}^{\infty}$ is bounded.

Theorem 2.2. Let $k \in L_{\infty}(\Omega) . Q_{k}$ is a compact map on $S(\Omega)$, and therefore is a compact map on B_{k}. Hence $\left\{Q_{k}^{p}(0)\right\}_{p=1}^{\infty}$ has a convergent subsequence and the infimum in (1.2) is attained.

Proof. We give the proof for $m=2$. The proof for arbitrary m is similar. Note first that for $j=1,2$ and $k_{1}, k_{2} \in L_{x}(\Omega)$, we have

$$
\begin{equation*}
\left\|H_{j}\left(k_{1}\right)-H_{j}\left(k_{2}\right)\right\| \leqslant\left\|k_{1}-k_{2}\right\| . \tag{2.11}
\end{equation*}
$$

If $f\left(x_{1}, x_{2}\right)=\phi_{1}\left(x_{1}\right)+\phi_{2}\left(x_{2}\right)$, then

$$
\begin{equation*}
Q_{k}(f)=H_{1}\left(k-\phi_{2}\right)+H_{2}\left(k-H_{1}\left(k-\phi_{2}\right)\right) . \tag{2.12}
\end{equation*}
$$

Hence, for any $f \in S(\Omega), k_{1}, k_{2} \in L_{C S}(\Omega)$,

$$
\begin{equation*}
\left\|Q_{k_{1}}(f)-Q_{k_{2}}(f)\right\| \leqslant 3\left\|k_{1}-k_{2}\right\| . \tag{2.13}
\end{equation*}
$$

Let $\varepsilon>0$. As $k \in K(\Omega)$, we may find finitely many disjoint measurable sets $\left\{E_{r}^{i}\right\}_{r-1}^{R}$ in Ω_{i} such that $\bigcup_{r=1}^{R} E_{r}^{i}=\Omega_{i}$, and real numbers $\left\{\alpha_{r s}\right\}_{r, s-1}^{R}$, so that

$$
\begin{equation*}
\left\|k-\sum_{r \cdot s=1}^{R} \alpha_{r s} \chi_{E_{r}^{1}} \chi_{E_{s}^{2}}\right\|<\varepsilon / 3 . \tag{2.14}
\end{equation*}
$$

Now let $\hat{k}=\sum_{r, s-1}^{R} \alpha_{r s} \chi_{E_{r}^{1}} \chi_{E_{s}^{2}}$. For $f=\phi_{1}+\phi_{2} \in S(\Omega)$, we have, by Lemma 2.1, that

$$
\begin{aligned}
Q_{k}(f)= & \sum_{r=1}^{R} \chi_{E_{r}^{\prime}} H_{1}\left[\sum_{s=1}^{R} \alpha_{r s} \chi_{E_{s}^{2}}-\phi_{2}\right] \\
& +\sum_{x=1}^{R} \chi_{E_{r}^{2}} H_{2}\left[\sum_{r=1}^{R} \alpha_{r s} \chi_{E_{r}^{\prime}}-H_{1}\left(\hat{k}-\phi_{2}\right)\right] .
\end{aligned}
$$

As $\chi_{E_{r}^{2}}$ and ϕ_{2} are independent of $x_{1}, H_{1}\left|\sum_{s=1}^{R} \alpha_{r s} \chi_{E_{s}^{2}}-\phi_{2}\right|$ is constant for each r. Similarly $H_{2}\left|\sum_{r-1}^{R} \alpha_{r s} \chi_{F_{r}^{\prime}}-H_{1}\left(\hat{k}-\phi_{2}\right)\right|$ is constant. Hence Q_{k} has finite dimensional range.

We apply (2.13) twice to obtain

$$
\begin{equation*}
\left\|Q_{k}(f)-Q_{k}(f)\right\| \leqslant 3\|k-\hat{k}\|<\varepsilon . \tag{2.15}
\end{equation*}
$$

Hence Q_{k} is the uniform limit of maps on $S(\Omega)$ which have finite dimensional range. This completes the proof.

We note that Theorem 2.2 is in a sense a converse of a theorem in $[3 \mid$. Golomb showed, in the case $m=2$, that if one assumes that the minimum in (1.2) is attained, then Theorem 2.1 holds.

The reader should note that if k is continuous on Ω, so is $Q_{k}^{p}(0)$ for each $p \geqslant 1$. Hence if k is continuous the infimum in (1.2) is attained at a continuous $f \in S(\Omega)$.

The remainder of the paper concerns only the case $m=2$. In this case we have

$$
\begin{equation*}
Q_{k}(f)=f+H_{1}(k-f)+H_{2}\left(k-f-H_{1}(k-f)\right) \tag{2.16}
\end{equation*}
$$

for $f \in S(\Omega)$. We let U_{k} denote the set of limit points of the sequence $\left\{Q_{k}^{p}(0)\right\}_{p-1}^{\infty} . \quad U_{k}$ is non-empty for $k \in K(\Omega)$ by Theorem 2.2. As $H_{2}\left(k-Q_{k}^{p}(0)\right)=0 \quad$ for every $p \geqslant 1$ and $\lim _{p \rightarrow,}\left\|k-Q_{k}^{p}(0)\right\|=$ $\lim _{p \rightarrow \infty} \| k-Q_{k}^{p}(0)-H_{1}\left(k-Q_{k}^{p}(0) \|=\mu(k)\right.$, we have for $k \in K(\Omega)$ and $f \in U_{k}$.

$$
\begin{equation*}
H_{2}(k-f)=0 \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\|k-f\|=\left\|k-f-H_{1}(k-f)\right\|=\mu(k) . \tag{2.18}
\end{equation*}
$$

Also note that if $f \in U_{k}, Q_{k}(f) \in U_{k}$.
For $m=2$ and $k \in K(\Omega)$ we define

$$
\begin{align*}
& P_{1}(k)=\underset{x_{2} \in \Omega_{2}}{\operatorname{ess} \sup } k\left(x_{1}, x_{2}\right), \\
& p_{1}(k)=\underset{x_{2} \in \Omega_{2}}{\operatorname{ess} \inf } k\left(x_{1}, x_{2}\right), \tag{2.19}\\
& P_{2}(k)=\underset{x_{1} \in \Omega_{1}}{\operatorname{ess} \sup } k\left(x_{1}, x_{2}\right), \\
& p_{2}(k)=\underset{x_{1} \in \Omega_{1}}{\operatorname{ess} \inf } k\left(x_{1}, x_{2}\right) .
\end{align*}
$$

Hence $H_{j}(k)=\frac{1}{2}\left(P_{j}(k)+p_{j}(k)\right)$.
We require the following theorem given for the case of continuous k in $|1|$ and $|2|$.

Theorem 2.3. Let $m=2, k \in K(\Omega)$, and $f \in U_{k}$, then $H_{1}(k-f)=0$.
Proof. If $g \in K(\Omega)$ is such that $H_{1}(g)=0$, we have, for almost every $x_{1} \in \Omega$,

$$
\begin{equation*}
-P_{1}\left(H_{2}(g)\right) \leqslant H_{1}\left(g-H_{2}(g)\right) \leqslant-p_{1}\left(H_{2}(g)\right) \tag{2.20}
\end{equation*}
$$

Similarly if $k \in K(\Omega)$ is such that $H_{2}(h)=0$ we have, for almost every $x_{1} \in \Omega_{1}$,

$$
\begin{equation*}
-P_{2}\left(H_{1}(h)\right) \leqslant H_{2}\left(h-H_{1}(h)\right) \leqslant-p_{2}\left(H_{1}(h)\right) . \tag{2.21}
\end{equation*}
$$

If $\left\{k_{n}\right\}$ is the sequence given by (2.2), inequalities (2.20) and (2.21) imply that, for $n \geqslant 1$,

$$
\begin{gather*}
-P_{2}\left(H_{1}\left(k_{2 n}\right)\right) \leqslant p_{1}\left(H_{2}\left(k_{2 n+1}\right)\right) \leqslant-P_{2}\left(H_{1}\left(k_{2 n+1}\right)\right), \tag{2.22}\\
P_{1}\left(H_{2}\left(k_{2 n+1}\right)\right) \leqslant-p_{2}\left(H_{1}\left(k_{2 n}\right)\right) \leqslant P_{1}\left(H_{2}\left(k_{2 n-1}\right)\right) . \tag{2.23}
\end{gather*}
$$

Hence there are real numbers α and β so that for every $f \in U_{k}$ we have

$$
\begin{align*}
& a=P_{2}\left(H_{1}(k-f)\right)=-p_{1}\left(H_{2}\left(k-f-H_{1}(k-f)\right)\right) . \\
& \beta=P_{1}\left(H_{2}\left(k-f-H_{1}(k-f)\right)\right)=-p_{2}\left(H_{1}(k-f)\right) . \tag{2.24}
\end{align*}
$$

The proof will be complete if we show that $\alpha=\beta=0$. To do this we extend the ideas of $|1|$. Without loss of generality we may assume that $\alpha \leqslant \beta$.

Let $s>0$, for $f \in U_{k}$ we define a measurable set $E(f) \leqslant \Omega_{2}$ by

$$
\begin{equation*}
E(f)=\left\{x_{2} \in \Omega_{2} \mid H_{2}\left(k-f-H_{1}(k-f)\right)\left(x_{2}\right) \geqslant \beta-\varepsilon\right\} . \tag{2.25}
\end{equation*}
$$

We define a functional τ on U_{k} by

$$
\begin{equation*}
\tau(f)=\underset{x_{2} \in f(f)}{\operatorname{ess} \sup } P_{2}\left(k-f-H_{1}(k-f)\right)\left(x_{2}\right) . \tag{2.26}
\end{equation*}
$$

We show that for every $g \in U_{k}$,

$$
\begin{equation*}
\tau(Q g) \geqslant \tau(g)+2 \beta-2 \varepsilon \tag{2.27}
\end{equation*}
$$

For $g \in U_{k}, f=Q g$, and $x_{2} \in E(f)$ we have, as in $[1]$

$$
\begin{equation*}
P_{2}\left(k-f-H_{1}(k-f)\right) \geqslant P_{2}(k-f)+\beta-\varepsilon . \tag{2.28}
\end{equation*}
$$

Hence. if $S=$ ess $\sup _{x_{2} \in E(f)} P_{2}(k-f)$, we must have

$$
\begin{equation*}
S+\beta \geqslant \tau(f) \geqslant S+\beta-\varepsilon . \tag{2.29}
\end{equation*}
$$

Moreover there is $F(f) \subseteq \Omega_{1}$ with $\mu_{1}(F(f))>0$ such that for $\left(x_{1}, x_{2}\right) \in F(f) \times E(f)$ we have

$$
\begin{equation*}
\left(k-f-H_{1}(k-f)\right)\left(x_{1}, x_{2}\right) \geqslant S+\beta-\varepsilon . \tag{2.30}
\end{equation*}
$$

Hence, for $x_{1} \in F(f)$, we must have

$$
\begin{equation*}
H_{1}(k-f) \leqslant-\beta+\varepsilon . \tag{2.31}
\end{equation*}
$$

As $\mu_{2}(E(f))>0$ and $H_{1}\left(k-f-H_{1}(k-f)\right)=0$ there is $G(f) \subseteq \Omega_{2}$ with $\mu_{2}(G(f))>0$ so that for $\left(x_{1}, x_{2}\right) \in F(f) \times G(f)$.

$$
\begin{equation*}
\left(k-f-H_{1}(k-f)\right)\left(x_{1}, x_{2}\right) \leqslant-S-\beta+\varepsilon . \tag{2.32}
\end{equation*}
$$

Therefore by (2.31) we have, for $\left(x_{1}, x_{2}\right) \in F(f) \times G(f)$,

$$
\begin{align*}
(k-f)\left(x_{1}, x_{2}\right) & \leqslant-S-2 \beta+2 \varepsilon \tag{2.33}\\
& \leqslant-\tau(f)-\beta+2 \varepsilon .
\end{align*}
$$

Let $\sigma(f)=-$ ess $\inf _{x_{1} \in F(f)}(k-f)\left(x_{1}, x_{2}\right)$. We have

$$
\begin{equation*}
-\sigma(f) \leqslant-\tau(f)-\beta+2 \varepsilon . \tag{2.34}
\end{equation*}
$$

A similar argument will show that

$$
\begin{equation*}
\sigma(f)=\sigma(Q g) \geqslant \tau(g)+\beta-2 \varepsilon \tag{2.35}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\tau\left(Q_{k} g\right) \geqslant \tau(g)+2 \beta-4 \varepsilon . \tag{2.36}
\end{equation*}
$$

Therefore $\beta \leqslant 0$, as if $\beta>0$ and $0<\varepsilon<\beta / 2$, we must have, for all $p \geqslant 1$. $g \in U_{k}$,

$$
\begin{equation*}
\mu(k) \geqslant \tau\left(Q_{k}^{p} g\right) \geqslant p \beta \tag{2.37}
\end{equation*}
$$

By (2.16) and (2.17) we have, as $\alpha+\beta \leqslant 0$.

$$
\begin{align*}
\mu(k) & =P_{1} P_{2}(k-Q f) \\
& =P_{1} P_{2}\left(k-f-H_{1}(k-f)-H_{2}\left(k-f-H_{1}(k-f)\right)\right) . \tag{2.38}\\
& \geqslant P_{1} P_{2}(k-f)-(\alpha+\beta) \\
& =\mu(k)-(\alpha+\beta) .
\end{align*}
$$

Hence $\alpha+\beta=0$ and $\alpha=\beta=0$. This completes the proof.
Theorem 2.4. Let $m=2, k \in K(\Omega)$. The sequence $\left\{k_{n}\right\}_{n}^{*}$, given $b y$ (2.2) converges in $L_{\infty}(\Omega)$.

Proof. Let k_{*} be any limit point of the sequence $\left\{k_{2 n}\right\}_{n+1}^{*}$. We write $k=k_{*}+\phi_{1}+\phi_{2}$ with $\phi_{i} \in L_{\infty}\left(\Omega_{i}\right)$. Then for $n \geqslant 2$ we have $k_{2 n}=k_{*}+\phi_{1}^{(n)}+\phi_{2}^{(n)}$.

$$
\begin{align*}
& \phi_{1}^{(n)}=-H_{1}\left(k_{*}+\phi_{2}^{(n-1)}\right), \\
& \phi_{2}^{(n)}=-H_{2}\left(k_{*}+\phi_{1}^{(n)}\right) . \tag{2.39}
\end{align*}
$$

By Theorem 2.3, $H_{i}\left(k_{*}\right)=0$, for $i=12$, hence,

$$
\begin{gather*}
-p_{2}\left(\phi_{2}^{(n)}\right) \leqslant P_{1}\left(\phi_{1}^{(n)}\right) \leqslant-p_{2}\left(\phi_{2}^{(n-1)}\right) \tag{2.40}\\
P_{2}\left(\phi_{2}^{(n)}\right) \leqslant-p_{1}\left(\phi_{1}^{(n)}\right) \leqslant P_{2}\left(\phi_{2}^{(n-1)}\right)
\end{gather*}
$$

Now by Theorem 2.2, there is a subsequence $\left\{k_{2 n j}\right\}_{j=1}^{\infty}$ of $\left\{k_{2 n}\right\}_{n=1}^{\infty}$ which converges to k_{*} in $L_{\infty}(\Omega)$. This means that if $\bar{\phi}_{i}^{(j)}=\phi_{i}^{(n j)}$ we have $\lim _{j \rightarrow x}\left\|\bar{\phi}_{1}^{(j)}+\bar{\phi}_{2}^{(j)}\right\|=0$. This, together with (2.40) imply that there is a real number c so that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \bar{\phi}_{1}^{(j)}=c=-\lim _{j \rightarrow 8} \tilde{\phi}_{2}^{(j)} \tag{2.41}
\end{equation*}
$$

Now let $\varepsilon>0$. Choose j so that $j \leqslant j_{0}$ implies that

$$
\begin{equation*}
\left\|\bar{\phi}_{1}^{(j)}-c\right\|<\frac{\varepsilon}{2}, \quad\left\|\bar{\phi}_{2}^{(j)}+c\right\|<\frac{\varepsilon}{2} \tag{2.42}
\end{equation*}
$$

Inequality (2.4) implies that for all $n \geqslant n_{j_{0}}$, and almost every $x_{1} \in \Omega_{1}$, and $x_{2} \in \Omega_{2}$,

$$
\begin{align*}
& c-\frac{\varepsilon}{2} \leqslant \phi_{1}^{(n)} \leqslant c \frac{\varepsilon}{2}, \\
&-c-\frac{\varepsilon}{2} \leqslant \phi_{2}^{(n)} \leqslant-c+\frac{\varepsilon}{2} . \tag{2.43}
\end{align*}
$$

Hence $\left\|\phi_{1}^{(n)}+\phi_{2}^{(n)}\right\| \leqslant \varepsilon$ for $n \geqslant n_{j_{0}}$, and therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} k_{2 n}=k_{*} . \tag{2.44}
\end{equation*}
$$

As $\lim _{n \rightarrow \infty:}\left\|k_{2 n}-k_{2 n+1}\right\|=\lim _{n \rightarrow \infty:}\left\|H_{1}\left(k_{2 n}\right)\right\|=\left\|H_{1}\left(k_{*}\right)\right\|=0, \lim _{n \rightarrow \infty} k_{2 n+1}=$ k_{*}. This completes the proof.

Appendix

Here we prove that the subspace $S(\Omega)$ given by Eq. (1.1) is closed.
We define continuous projections $\left\{P_{i}\right\}_{i=0}^{m},\left\{Q_{i}\right\}_{i=1}^{m}$, and $\left\{R_{i}\right\}_{i=1}^{m}$ as follows

$$
\begin{align*}
& P_{0} f=\frac{1}{\mu(\Omega)} \int_{\Omega} f(x) d x \tag{A1}\\
& Q_{i} f=\frac{1}{\mu_{i}\left(\Omega_{i}\right)} \int_{\Omega_{i}} f(x) d x_{i} \tag{A2}
\end{align*}
$$

$$
\begin{align*}
& R_{i} f=\left(\prod_{j \neq j} Q_{j}\right) f, \tag{A3}\\
& P_{i} f=\left(R_{i}-P_{0}\right) f, \quad 1 \leqslant i \leqslant m \tag{A4}
\end{align*}
$$

All of the above projections commute. Note that $R_{i} f$ and $P_{i} f$ depend only on $x_{i}, Q_{i} f$ is independent of x_{i}. We have

$$
\begin{align*}
& R_{i} Q_{i}=Q_{i} R_{i}=P_{0} . \quad 1 \leqslant i \leqslant m . \tag{A5}\\
& P_{0} Q_{i}=Q_{i} P_{0}=R_{i} P_{0}=P_{0} R_{i}=P_{0} . \tag{A6}
\end{align*}
$$

For $1 \leqslant i \leqslant m$, by Eq. (A6).

$$
\begin{equation*}
P_{i} P_{0}=\left(R_{i}-P_{0}\right) P_{0}=R_{i} P_{0}-P_{0}=0 \tag{A7}
\end{equation*}
$$

For $1 \leqslant i, j \leqslant m$, we have

$$
R_{i} R_{j}=\left\{\begin{array}{ll}
P_{0} & i \neq j \tag{A8}\\
R_{j} & i=j
\end{array}\right\}=R_{j} R_{i}
$$

and hence,

$$
\begin{align*}
P_{i} P_{j} & =\left(R_{i}-P_{0}\right)\left(R_{j}-P_{0}\right) \\
& =R_{i} R_{j}-P_{0} R_{j}-R_{i} P_{0}+P_{0} \\
& =R_{i} R_{j}-P_{0}=\delta_{i j} P_{j} . \tag{A9}
\end{align*}
$$

Therefore, the operator P given by

$$
P=\grave{V}_{i=1}^{m} P_{i}
$$

is a continuous (and hence closed) projection on $L^{19}(\Omega)$ and |4, p. $241 \mid$ hence has closed range. We show that this range is $S(\Omega)$.

As $P_{0} f$ is constant for all $f \in L^{*}(\Omega)$ and $P_{j} f$ depends only on x_{j}. $\operatorname{Ran}(P) \leqslant S(\Omega)$ by definition. We will be done if we show that $P \phi=\phi$ for all $\phi \in S(\Omega)$.

By the definition of S, it will suffice to show that if $\phi_{k} \in L^{\prime}(\Omega)$ depends only upon x_{k}, then $P \phi_{k}=\phi_{k}$. We have

$$
\begin{array}{ll}
Q_{k} \phi_{k}=P_{0} \phi_{k}=R_{i} \phi_{k} & \text { if } \quad i \neq k, \\
Q_{i} \phi_{k}=R_{k} \phi_{k}=\phi_{k} & \text { if } \quad i \neq k .
\end{array}
$$

Hence.

$$
\begin{align*}
P_{i} \phi_{k} & =0, \quad i \neq k, \quad i \geqslant 1, \tag{A13}\\
P_{k} \phi_{k} & =\phi_{k}-P_{0}\left(\phi_{k}\right) . \tag{A14}
\end{align*}
$$

Therefore.

$$
\begin{equation*}
P \phi_{k}=\sum_{j-0}^{m} P_{j} \phi_{k}=P_{0} \phi_{k}+P_{k} \phi_{k}=\phi_{k} \tag{A15}
\end{equation*}
$$

and the proof is complete.

Acknowledgments

The author would like to thank Professor Michael Golomb of MRC and Purdue University, Dr. Dennis Pence of MRC and Professor M. G. Crandall of MRC for helpful discussions regarding this work. The author also wishes to thank Professor E. W. Cheney of the University of Texas for making him aware of the paper by Aumann.

References

1. G. Almann. Über approximative nomographie. II. Baver. Akad. Wiss. Math.-Natur. Kl. Sitzungsber (1959). 103-109.
2. S. P. Diliberto and E. G. Straus. On the approximation of a function of several variables by a sum of functions of fewer variables, Pacific J. Math. 1 (1951), 195-210.
3. M. Golomb, Approximation by functions of fewer variables, in "On Numerical Approximation," pp. 275-327, Univ. of Wisconsin Press, Madison, 1959.
4. A. E. Taylor, "Introduction to Functional Analysis," Wiley, New York, 1958.

[^0]: This work was supported by the United States Army under Contract DAAG29-75-0024 and by the National Science Foundation under Grant MCS75-17385 AO1.

