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For a class of functions of several variables. which includes the continuous
functions. we show that there exists a sum of functions of one variable that
minimizes the distance from the given function to the space of such sums. For
functions of two variables we show that such a minimizing sum may be constructed
by an iterative scheme.

I. INTRODUCTION

Let {0,}™, be compact Hausdorff topological spaces endowed with
positive regular Borel measures {u;}7" ,. Let 2=0,X 02, X - X 02, and
d=u, Xy X Xu,. Let L () denote the Banach space of u-essentially
bounded real-valued functions on {2 with the essential supremum norm. Let
S(£2) denote the subspace of L (£2) consisting of sums of the form \_,'" R
with ¢, € L_(£2,).

Let S(£2) denote the subspace of L™ (£2) given by

S@) = |fELT DI/ (x)= Y 0ux). 0 ELT(R) . (1.1)
! k=1
We show in the Appendix that S(£2) is a closed subspace of L™ (£2).

We let K(£2) denote the closure in L. (2) of the set of all finite sums of
the form 33" ]/, 04, where ¢,, € L (R2)) for 1< j<m and 1 kM.
As products and sums of functions in L _(£2;) are also in L (), K is a
closed subalgebra of L (£2). In fact, K(£2) is the smallest closed subalgebra
of L, (£2) containing S(£2). We note that C(22) < K(£2); here C(£2) denotes
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180 C. T. KELLEY

the space of all continuous functions on 2. For k&€ L_(2) we define a
functional u(k) by
uky=inf |k—f]l. (1.2)

feS()

In |2}, Diliberto and Strauss considered the problem of finding a sequence
{f,} = 8(82) so that lim,_ ||k —f,| = u(k). They were able to do this and
for continuous k their sequence possessed a convergent subsequence. In | 1],
Aumann showed that their sequence converged if m = 2 and k is continuous.
The purpose of this note is to extend these results to the case k € K(£2).

The reader should note that K(2)#L _(2). To see this let
02,=0,=10.1| and let f(x,, x,) be given by

Jx.ox)=1 X, 2 X,

=0 X <X,
Then it is easy to see that
ke]E(!)) Hf k” b (1 4)
I

For k€ L (2) and | <j < m define H(k)€ L_(£2;) for u-almost every
x;, by

H,(k)(x;) = 3(ess sup k(x, ..., X,,) + ess i(glfk()c1 ey X)) 2.1)
x; €82 X;€824
it i*j

The sequence f, of Diliberto and Strauss is defined as follows. Let &, be
given by

ko = k.
kl:kO_Hl(kU)’ (2 2)
k2:k1 4H2(k1)»

kmp»r:kmp4r—l_Hr(kmp+r-l)’
for 1<r<m and p>=0.

We define f, by
fn:k_kn' (23)
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The following theorem was proved by Diliberto and Strauss for
continuous k. Their proof generalizes directly to the case considered here.

THeEOREM 2.1. For k€ L (R2), let k, be given by (2.2). Then

lim [k, = lim [k — £, = (k).

Moreover, for n > 1, ||k, || <||k,_,|l, and hence,

< 2 K]

We list some obvious properties of the functions H,(k) in the following
lemma.

LEMMA 2.1. Let k € L () and let i be fixed. Let {E,}¥_, be a partition
of 2, into disjoint measurable sets. Let ¢ € L (£2,) and let p. € L (2} be
independent of x; for 1 <r < R. Then

(@) Hyk+0)=Hk)+¢.
(b) Mk = H (k) Ikl
(c) Hok)=oH{Kk).
(d) H(F, Xy p)= . X, H{p,)
In (d). X is the characteristic funtion of the set E.

For f&€ §(2), we may write f= Y7 , ¢, with ¢, € L _(£2;). This represen-
tation is unique in the sense that if f=>'7" | v,, then there are constants J,,
so that >’ 6,=0 and y, + J, = ¢,. For /€ S(£2) as above and k € L ()
we define Q,(f)=2"" q//), where g, € L _,(£2,) is given by

i~1 m
) =H (k=Y g= ¥ g}, 24)
J i=i+1

Note that each individual g, depends on the representation f= 3" ¢,.
However, Q,(/) does not depend on this representation. Indeed, if
S=>"(¢; +9,), where the J;’s are constants such that ', J, =0, let g;
be defined by (2.4) with ¢, replaced by ¢,+d,. We have
Gi=H(k=37",0;+0,)=H(k—-3",¢)—37,6,=q,+0,. Hence
§,=q,—8,— 3" .6,=q,+,. Continuing in this way we obtain
G,=q;+ 6, for all i, and hence 37  q,=>" 4, Note that Q, is a
continuous map on S(£2).

For k€ L_(R2), let f, be defined by (2.3). Fix p>0 and write
Sop =21 10, We have k,, =k —>'7" | ¢,. Hence
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kmp+l = kmp - Hl(kmp)

m

=k =Y 0= 1) (2.5)

i “

Continuing we have

kmp+2=kmp+l_H2(kmp+1)
:k_ : ¢i_ql(fmﬂ)_H2 <k—“ : ¢i_ql(fmp))
i=2 i-2
=k= X 6, = 4,(fp) — Sy
=3

1

Finally, we obtain,

m

kmp+m:k7: qi(fmp):k#.fm(p+l)' (27)
N

i

Hence,

Jup=0%0);  p>1 (2.8)

Also by Theorem 2.1, for k€ L .(£2) and f€ S(2), we have
Ik — QW< Ik =1 (2.9)
Hence, for each k, Q, maps bounded sets in S(£2) into bounded sets in S(£2).
Moreover, for p > 1
1Q%(0) — k|l < Ik (2.10)

Therefore Q, maps the set B, = {f€ S(2) |||k —f]| < 1} into itself and the
sequence {Q%(0)},2, is bounded.

THEOREM 2.2. Let k€L (). Q, is a compact map on S(£2). and
therefore is a compact map on B,. Hence {Q%(0)},". | has a convergent subse-
quence and the infimum in (1.2) is attained.
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Proof. We give the proof for m = 2. The proof for arbitrary m is similar.
Note first that for j=1, 2 and k,, k, € L_(£2), we have

1 Hy(ky) — Hi(k I < N kg = ksl (2.11)
If £(x,. X,) = $,(x,) + 5(x,), then
Qu(f)=H(k —9,) + Hy(k — H,(k — 9,)). (2.12)
Hence, for any /€ S(Q), k,. k, € L, (),

10, (/)= Qi (NS 3Nk, — &,

I (2.13)

Let ¢ > 0. As k € K(£2), we may find finitely many disjoint measurable
sets {ELVE | in @, such that UX_, El=,, and real numbers {a, |F, |, so
that

R

Hk_ : ar.sXE}XE?

r.s1

<ef3. (2.14)

Now let k=3% _ a .y For f=¢ +¢,€5(R) we have, by
Lemma 2.1, that

R

R
Qi)=Y xuH, [\_ a,sxgg—%}
r—i

s=1

R R .
+ 1_ xe2H, [,\; arst‘j‘Hl(E*¢z)l-

x=1 r=1

As y,: and ¢, are independent of x,, H, |> % | a, xz: — ¢,| is constant for
each r. Similarly H,[Y% a”)(,;:—H,(§—¢2)} is constant. Hence Qy has
finite dimensional range.

We apply (2.13) twice to obtain

104/ = QeI 3 [k — kIl <& (2.15)

Hence Q, is the uniform limit of maps on S(£2) which have finite dimen-
sional range. This completes the proof.

We note that Theorem 2.2 is in a sense a converse of a theorem in [3].
Golomb showed, in the case m = 2, that if one assumes that the minimum in
(1.2) is attained, then Theorem 2.1 holds.

The reader should note that if & is continuous on £, so is Q%(0) for each
p> 1. Hence if k is continuous the infimum in (1.2) is attained at a
continuous f € S(£2).
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The remainder of the paper concerns only the case m = 2. In this case we
have

Q) =S+ H(k—[f)+H,(k—f—H\(k—[)) (2.16)

for f€ S(£2). We let U, denote the set of limit points of the sequence
{020)),~,. U, is non-empty for k€& K(2) by Theorem 2.2. As
Hyk —Q%0))=0 for every p>1 and lim,_, |k - Q%O0) =
lim,, [[k —Q%0) — H,(k — Q%(0)| =u(k), we have for k€ K(Q) and
JeU,.

H,k—=f)=0 (2.17)
and

[k —=fll=Ilk /= H, (k=) = uik). (2.18)

Also note that if f'€ Uy, Q,(/) € U,.
For m =2 and k € K(£2) we define

P (k)=esssup k(x,, x,),
x2€Q,

pik) =essinf k(x,.x,).
raeeh (2.19)

P,(k)=ess sup k(x,. x,),

x €0

D> (k)—essmfk(,\, X5).

X €€Q,

Hence H,(k) = $(P,(k) + p;(k)).
We require the following theorem given for the case of continuous & in | 1]
and |2].

THEOREM 2.3. Let m=2, k€ K(2).and f€ U,, then H,(k —f)=0.

Proof. 1f g€ K(£2) is such that H,(g)=0, we have, for almost every
x, €0,

—P(Hy(8)) < H,(g — Hy(8)) < —pi(Hy(8))- (2.20)

Similarly if k€ K(£2) is such that H,(h)=0 we have, for almost every
X, €L,

—Py(H (M) < Hy(h — H\(h)) < —p,(H (h)). (2.21)
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If {k,} is the sequence given by (2.2), inequalities (2.20) and (2.21) imply
that, for n > 1,

—=Py(H,(ky,)) <pi(Hylkyy ) < —Po(H (kg 1))s (2.22)
PI(HZ(k2n+ 1)) < ”pz(Hl(kzn)) é PI(HZ(er'— 1)) (2'23)

Hence there are real numbers « and £ so that for every /€ U, we have

a=Py(H(k =f))=—=p,(Hy(k == H (k=)

(2.24)
p=P(Hyk—f—H/(k—[))=—p(H (k—[))

The proof will be complete if we show that a =f=0. To do this we
extend the ideas of |1|. Without loss of generality we may assume that
a < f.

Let ¢ > 0, for f& U, we define a measurable set £(f) < 2, by

E(f)={x,€ 2, | Hylk —f— H\(k =/ ))(x)) 2 f — e} (2.25)

We define a functional 7 on U, by

t(f)=esssup Potk — /= H (k —[))(x,). (2.26)

EE()
We show that for every g € U,,
1(Qg) > 1(g) + 26 — 2e. (2.27)
For g € U,, f= Qg, and x, € E(f) we have, as in |1]
Pk —f=H (k=[N 2Pk —f)+B—e (2.28)
Hence. it S =ess sup, .., Py(k —f), we must have
S+B>1(f)=8S+8—¢. (2.29)

Moreover there is F(f)< 2, with u,(F(f))>0 such that for
(X,.X,) € F(f) X E(f) we have

(k—f—=H(k=/Nx1,x)) 2 S+ ¢ (2.30)
Hence, for x, € F(f), we must have

Hi(k—f)< B +e (2.31)
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As u(E(f))>0 and H(k—f—H,(k—f))=0 there is G{(/)< 2, with
4, (G(f)) > 0 so that for (x,,x,) € F(f) X G(f).

(k=f=H, k=N, x)< =S = +e. (2.32)

Therefore by (2.31) we have, for (x,.x,) € F(f) X G(f),

k~— ) -S -2+ 2
(k =/)x;. x,) | f+ 2e (2.33)
<=t f) B+ 2
Let o(f') = —ess inf, .., (K —f)(x;, x,). We have
—o(f) < —1(f) — B + 2. (2.34)
A similar argument will show that
o(f)=0(Qg) > t(g)+ B — 2. (2.35)
Hence,
(@, g)=t(g)+ 26 —de. (2.36)

Therefore < 0. as if >0 and 0 < & < /2, we must have, for all p > i.
ge U,.

u(k) > 1(Qr g) 2 pb. (2.37)
By (2.16) and (2.17) we have, as a + § <0,
u(k) =P, Pk —Of)
=P Pk —f—H\k =) - Hyk —f— H\(k=])))

(2.38)
2P\ Pk —f)—(a+h)
=u(k) — (a+f).
Hence « + # =0 and « = ff = 0. This completes the proof.
THEOREM 2.4. Let m=2, k€ K(R2). The sequence {k,}, , given by

(2.2) converges in L _.(2).

Proof. Let k. be any limit point of the sequence {k,,}, ,. We write
k=ky+o,+¢, with ¢,€L_(2,). Then for n>2 we have
Koy = ko 4 0" & 0.

01" = —H (ks + 05",
0" = —H, (ks + 61").
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By Theorem 2.3, H,(ky) =0, for i = 1 2, hence,

—P2(85") < Py(8Y") < —py(0F ")

Py(93") < —pi(91") < Py(91" ).
Now by Theorem 2.2, there is a subsequence {k,,;};, of {k,,},_, which
converges to ky in L_ (). This means that if §¥=¢" we have

lim,_, |8 + 8| = 0. This, together with (2.40) imply that there is a real
number ¢ so that

(2.40)

lim ¢"’~c~—llm¢“’ (2.41)

e

Now let ¢ > 0. Choose j so that j </, implies that
i) 6 70 £
10—l <+, 189 4 ell < 5 (242)

Inequality (2.4) implies that for all n 2> n; , and almost every x, € 2,, and
X, €10,,

& (1) &
C *7<¢1 <C‘“2‘-~
(2.43)
—c~—<¢‘"’ et =
~ 2 .
Hence [|6{" + ¢3"'|| < ¢ for n > n; , and therefore
AS limnam Hk2n—k2n+ 1 H :limnaat ”Hl(k2n)”:”]_11(k*)”:0* llmn — kln =

k. This completes the proof.

APPENDIX

Here we prove that the subspace S(£2) given by Eq. (1.1) is closed.
We define continuous projections {P;}7 ,, {Q;!7" ,, and {R,}[" as follows

Py = u(Q) | S (A1)

Qif=

A2
(-Q) 0, (A2)
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rr=(110)7 (A3)
P f=(R;—Py) /[ L<i<m, (A4)

All of the above projections commute. Note that R, fand P,/ depend only
on x;. 9,/ is independent of x;. We have

R,Q,=Q.R,=P,. 1<i<m, (AS)
PyQ;i=Q;Py=R;Py=P,R;=P,. (A6)

For 1 <i< m, by Eq. (A6).

PP, =(R,—P)P,=R,P,—P,=0. (AT)

For 1 <i, j<m, we have

[#j]

P
R.R,:S a ' = R.R. A
TR =g (AS)
and hence,
PiPj=(R; - P())(Rj - Py)
= RiR_f - P(,R,- - R,Py+ P,
=RR,—P,=0,P;. (A9)
Therefore, the operator P given by
P=\"p, (A10)

!
0

is a continuous (and hence closed) projection on L7 (£2) and |4, p. 241]
hence has closed range. We show that this range is S(£2).

As P, f is constant for all f€L" (2) and P,/ depends only on x;.
Ran(P) £ S(2) by definition. We will be done if we show that P¢ = ¢ for all
€ S2).

By the definition of S. it will suffice to show that if ¢, € L’ (£2) depends
only upon x, . then P¢, =¢,. We have

0k = Py0, = R0, it i#k, (ALl
00, =R, 0,=09, it i#k. (A12)
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Hence,
P, =0, i+k, i>1, (A13)
Pk¢k:¢k_Po(¢k)- (A14)
Therefore,
P¢k::Pj¢k:P0¢k+Pk¢k:¢k (AlS)

i=0

and the proof is complete.
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