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For a class of functions of several variables, which includes the continuous
functions. we show that there exists a sum of functions of one variable that
minimizes the distance from the given function to the space of such sums. For
functions of two variables we show that such a minimizing sum may be constructed
by an iterative scheme.

I. INTRODUCTION

Let l.o,.I;"c 1 be compact Hausdorff topological spaces endowed with
positive regular Borel measures V.i.;} r- I' Let .0 =.0 1X .02 X '" >( .0m and
./J =./J 1 X Ji2 X ... X Jim' Let L 70(.0) denote the Banach space of Ji-essentially
bounded real-valued functions on .0 with the essential supremum norm. Let
5(.0) denote the subspace of Lr:(.o) consisting of sums of the form \ 'rc 1 ¢i'
with 0; E Lcr(.oJ

Let 5(.0) denote the subspace of L Cf(.o) given by

We show in the Appendix that 5(.0) is a closed subspace of L (.0).
We let K(.o) denote the closure in Loc(.o) of the set of all finite sums of

the form 2...:11
I njn 1 ¢kj' where ¢kj E Lcr/.oj ) for I ';;;'j';;;' m and 1(, k ,;;;, M.

As products and sums of functions in Loc(.oJ are also in Loc(.oJ, K is a
closed subalgebra of Loo(.o). In fact, K(.o) is the smallest closed subalgebra
of L f (.0) containing 5(.0). We note that q.o) c K(.o); here q.o) denotes
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the space of all continuous functions on Q. For k E Lx(Q) we define a
functional !J.(k) by

!J.(k) = inf Ilk - III.
!ESWl

( 1.2)

In 12 J, Diliberto and Strauss considered the problem of finding a sequence
Un}cS(Q) so that limn~oollk-lnll=!J.(k).They were able to do this and
for continuous k their sequence possessed a convergent subsequence. In III.
Aumann showed that their sequence converged if m = 2 and k is continuous.
The purpose of this note is to extend these results to the case k E K(Q).

The reader should note that K(Q) c/c LX)(Q). To see this let
Q) = Q 2 = 10, 11 and let/(x[, x 2 ) be given by

( 1.3)
=0 Xl <X2 •

Then it is easy to see that

inf 11/- kll = ~.
k Eh (lJ)

II

(1.4 )

For k E Lx(Q) and 1 <.J <. m define H;(k) E Lu:(Q;) for !J.ralmost every

Xj' by

H;(k)(x;) = Hess sup k(x) ,..., x m ) + ess inf k(x 1 , ... , x m ). (2.1)
XiEQi XiEfJi

i I-} i rj

The sequence In of Diliberto and Strauss is defined as follows. Let kn be
given by

We define In by

ko = k,

k l = ko - H)(ko)'

k 2 = k) - H 2(k),

for 1 <. r <. m and p:;;' o.

(2.2 )

(2.3 )
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The following theorem was proved by Diliberto and Strauss for
continuous k. Their proof generalizes directly to the case considered here.

THEOREM 2.1. For k E L r (.0), let k" be given by (2.2). Then

lim II k" II = lim II k -I" Ii = fl(k).
l1"'j 11--4'/

Moreover,Jor n? 1, Ilk,,11 <Ilk"-III, and hence,

Ilf" ::;; 211kll.

We list some obvious properties of the functions H;(k) in the following
lemma.

LEMMA 2.1. Let k E Lcr:J.o) and let i be fixed. Let {Erf~~ 1 be Q partition
of .0; into disjoint measurable sets. Let ¢ E Llf)(.o;) and let Pr E Lx,(.o) be
independent of xJor I ::;; r <R. Then

(a) fl;(k + I/J) = H;(k) + I/J.

(b) Ilk - H;(k)11 <Ilkll·
(c) H;(¢k)=I/JH;(k).

(d) H;(L~~ 1 XlrPr) = L~c] X/rH;(Pr)'

In (d). X lr is the characteristicfuntion of the set E r.

For fE 5(.0), we may write f = L~ 1 ¢; with ¢; E Llf)(.o;). This represen~

tation is unique in the sense that iff= L:~=] l/f;, then there are constants 6;,
so that L:7'c 16; = 0 and l/f; + 6; = ¢;. For fE 5(.0) as above and k E Lw(.o)
we define Qk(f) = L:7' I q;(f), where q; E Llf)(.o;) is given by

(
; 1m)

q(f) = H. k ~ \' q - \' ,/, .., I _; _ '1';
j 1 ;~;+]

(2.4 )

Note that each individual q; depends on the representation f= L~ 1 ¢;.
However, Qk(f) does not depend on this representation. Indeed, if
f = Lr~ I (¢; + 6;), where the 6/s are constants such that Lr= 16; == 0, let qj
be defined by (2.4) with ¢; replaced by ¢; + 6;. We have
ql = H1(k - }'r~2 (¢; + ( 2)) = H](k - L:~~2 ¢j) - L:r= 2 6; = q] + 61, Hence
q2 = q2 - 6] - L~~.J 6; = q2 + 62 , Continuing in this way w(~ obtain
q; = q; + 6; for all i, and hence L~ 1 q; = L:r~ 1 qj' Note that Qk is a
continuous map on 5(.0).

For k E Lw(.o), let f" be defined by (2.3). Fix P? 0 and write
f,,,p = L:~ 1 I/Jj' We have kmp = k - L~ I ¢;. Hence
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= k -- ~, ¢i ~ H (k ~ ~, J..)
_ I I_¥'I
ii, i I

= k -- ~, ¢i. ~ H (k -- ~, ¢J)_ I I _ I

,. 2 ,. 2

III

i 2

(2.5 )

Continuing we have

III

= k ~ '\' ¢Ii - ql(fIllP) - q2(fIllP)'
,. J

Finally, we obtain,

III

k lllP +1Il = k - '\ ' qi(fIllP) = k ~j~(p+ 1)'

i I

Hence,

Also by Theorem 2.1, for k E Lu:;(.!2) andfE S(.!l), we have

(2.7)

(2.8 )

(2.9)

Hence, for each k, Qk maps bounded sets in S(.o) into bounded sets in S(.o).

Moreover, for p > I

II Q~(O) - kll ~ Ilkll· (2.10)

Therefore Qk maps the set B k = {IE S(.o) III k --ill ~ I ~ into itself and the
sequence {QHO)}:~ 1 is bounded.

THEOREM 2.2. Let k E LCI.).o). Qk is a compact map on S(.o), and
therefore is a compact map on Bk' Hence 1Q~(O) f: I has a convergent subse
quence and the infimum in (1.2) is attained.



SUMSOFFUNCTIONSOFONEVA~ABLE 183

Proof We give the proof for m = 2. The proof for arbitrary m is similar.
Note first that for j = 1, 2 and k l , k 2 E Lcx(Q), we have

(2. 11 )

(2.12 )

Hence, for anYfES(Q), k l , k 2 EL (Q),

(2.13 )

Let /; > O. As k E K(Q), we may find finitely many disjoint measurable
sets 1E~~~ 1 in Q i such that U~=IE~=Qi' and real numbers {arsf~.s I'SO

that

(2.14 )

Now let k = 2..:~.s -I arsXE;XF;' For f = ¢I + ¢2 E S(Q), we have, by
Lemma 2.1, that

As XF' and ¢J2 are independent of x l' HI [2..::~ 1 arsXE' - ¢21 is constant for
each;' Similarly H2[2..:~ 1 arsXF' - H1(k - ¢2) I is co~stant. Hence Q~ has
finite dimensional range.'

We apply (2.13) twice to obtain

(2.15)

Hence Qk is the uniform limit of maps on S(Q) which have finite dimen
sional range. This completes the proof.

We note that Theorem 2.2 is in a sense a converse of a theorem in [31.
Golomb showed, in the case m = 2, that if one assumes that the minimum in
(1.2) is attained, then Theorem 2.1 holds.

The reader should note that if k is continuous on Q, so is Qf(O) for each
p ~ 1. Hence if k is continuous the infimum in (1.2) is attained at a
continuousfE S(Q).
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The remainder of the paper concerns only the case m = 2. In this case we
have

for fE S(Q). We let Uk denote the set of limit points of the sequence
{Qf(O) f;"-1' Uk is non-empty for k E K(Q) by Theorem 2.2. As
H 2(k - Qf(O)) = 0 for every P ~ I and limp., II k - Qf(O)li =

limp+x: Ilk ~ Qf(O) - HI(k - Qf(O)11 =,u(k), we have for k E K(Q) and

fE Uk'

and

II k - fll = Ilk - f~ H](k - f)11 =Il(k).

Also note that if fE Uk' QkU) E Uk'
For m = 2 and k E K(Q) we define

Pj(k) = ess sup k(x], x 2 ),

\'~E Q ~

p](k) = ess inf k(x]. x 2 ).
r~E 0.'

P2(k) = ess sup k(x]. x 2),
r [E f) I

p2(k) = ess inf k(x l • x 2 ).
X'IEOt

(2.17)

(2.18)

(2.19)

Hence Hj(k) = }(P;(k) + pj(k)).
We require the following theorem given for the case of continuous k in II I

and 121.

THEOREM 2.3. Let m = 2, k E K(Q). andfE Uk. then H](k - j) = O.

Proof If g E K(Q) is such that HI(g) = O. we have, for almost every
XI EQ.

Similarly if k E K(Q) is such that H 2(h) = 0 we have. for almost every

X] EQI'
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If {k n \ is the sequence given by (2.2), inequalities (2.20) and (2.21) imply
that, for n ~ 1,

~P2(HI(k2n» ~PI(H2(k211 + I» ~ -P2(HI(k211~ I»' (2.22)

PI(H2(k 2n + I» ~ -p2(H,(k2n » ~ P I(H2(k 2n _,»· (2.23)

Hence there are real numbers a and 13 so that for every fE Uk we have

(J = P2(H I(k ~f» = -PI(H2(k - f - H,(k -f))).

fJ = P,(H2(k - f - H,(k - f)) = -P2(H I(k -f)).
(2.24)

The proof will be complete if we show that a = 13 = O. To do this we
extend the ideas of 11/. Without loss of generality we may assume that
a::;;; (J.

Let I: > O. for f E Uk we define a measurable set E(J) ::;;; Q 2 by

We define a functional r on Uk by

r(f) = ess sup P2(k ~f- H1(k - J)(x 2 ).
\,El.(1'l

We show that for every g E Uk'

r(Qg) ~ r(g) + 213 - 2[.

For g E Uk,! = Qg, and x 2 E E(f) we have, as in [1]

(2.26 )

(2.27)

Hence. jf S = ess sUPx,EJ(fl P 2(k -f), we must have

(2.29)

Moreover there IS F(f) c;; Q, with /1, (F(J) > 0 such that for
(x,. x 2 ) E F(f) X E(J) we have

(2.30)

Hence. for x, E F(f), we must have

(2.31 )
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(2.33 )

As fJ2(E(J)) > 0 and H](k - f - H](k -I)) = 0 there is G(J) c;;j2 2 with
f.l2(G(J)) > 0 so that for (x" x 2) E F(I) X G(J),

(k - f - Ht(k - 1)(x l , x 2 ) ~ -s - /3 + e. (2.32)

Therefore by (2.31) we have, for (x"x 2 ) E F(J) X G(J),

(k - l)(x J , x 2 ) ~ -S - 2fJ + 2e

~ -r(J) - fJ + 2e.

Let a(J) = -ess inf"Ef(f) (k - I)(x t' x 2). We have

-a(J) ~ -r(J) - fJ + 2[.

A similar argument will show that

a(J) = a(Qg);? r(g) + /3 - 2e.
Hence,

r(Qk g)?- r(g) + 2fJ - 4t:.

(2.34 )

(2.35 )

(2.36)

Therefore fJ ~ O. as if /3 > 0 and 0 < l: < /3/2. we must have, for all p;? I.
gE Uk.

f.l(k) >r(m g) >pfJ·

By (2.16) and (2.17) we have, as a +fJ~O•

.u(k) = P t P 2(k - Qf)

= P 1P2(k - f - Ht(k -I) - H 2(k - f - H,(k -I)).

;? P,P 2(k - I) - (a + fJ)

=fJ(k)- (a +fJ).

Hence a + fJ = 0 and a = fJ = O. This completes the proof.

(2.37 )

(2.38 )

THEOREM 2.4. Let m = 2, k E K (il). The sequence 1k 11 f ,: , given by
(2.2) converges in L cIJil).

Proof Let k * be any limit point of the sequence 1k 211 f,: I' We write
k = k* + 1fJ, +!/J 2 with ¢i E LCf(ilJ Then for n> 2 we have
k 211 = k* + 6\11) + ¢~II).

6\111 = -H,(k* + ¢iIl11 ),

!/Jill) = -H 2(k* + ¢\II)).
(2.39)
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By Theorem 2.3, HJk*) = 0, for i = 1 2, hence,

-P2(¢in») <PM\n») <-P2(¢in-I)),

P2(¢~nj)<-PI(¢\n)) <P2(¢~n-I).

187

(2.40)

Now by Theorem 2.2, there is a subsequence lk2nj}j~1 of lk2n}~~1 which
converges to k* in LJ(Q). This means that if iV) = ¢Injj we have
limi~f II iF) + i~) II = O. This, together with (2.40) imply that there is a real
number c so that

lim !fiil = c = - lim iV).
;'·Vf' j-oR

Now let t: > O. Choose J so that J <Jo implies that

(2.41 )

(2.42)

Inequality (2.4) implies that for all n ~ nju ' and almost every XI E [2). and
x 2 E [22.

(2.43 )
t:(n) t:-c - - ~ AI ~ -c + -2 '-"'1'2 '-" 2'

Hence II ~W) + ¢Jin ) II < t: for n ~ njo ' and therefore

(2.44 )

As limll~'x II k2n -k2n + ,II = limn~Cf II H 1(k 2n )11 = II H1(k*)11 =0, limn ~(f- k 21l + , =
k*. This completes the proof.

ApPENDIX

Here we prove that the subspace S(Q) given by Eq. (1.1) is closed.
We define continuous projections Wdr 0' jQdr " and jRifr I as follows

1
Pof=-I f(x)dx,

,u(Q) -!J

1
QJ=--I f(x)dx i ,

,ui(Qi) -!Ji

(A 1)

(A2)
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RJ= (II Qj)I
itJ

(A3)

(A4)

All of the above projections commute. Note that R J and PJ depend only
on Xi' QJis independent of Xi' We have

For I :(: i:(: In, by Eq. (A6).

1 :(: i:(: In, (AS)

{A6)

For I :(: i, j :(: In, we have

(A 7)

(A8)

and hence.

= R;R; - PORi -- R;Po+ Po

= R;R; - Po = i\;P;.

Therefore, the operator P given by

m

P= \' P
- I
i 0

(A9)

(A 10)

is a continuous (and hence closed) projection on L f (.0) and 14. p. 2411
hence has closed range. We show that this range is S(.Q).

As Pof is constant for all fE L f (.0) and PJ depends only on Xi'

Ran(P):(: S(.Q) by definition. We will be done if we show that p¢ = ¢ for all
¢ E S(.Q).

By the definition of S, it will suffice to show that if ¢ k ELf (.0) depends
only upon X k, then P¢k = ¢k' We have

QklfJk = PO¢k = Ri¢k

Qi¢k = Rk¢k = ¢k

if i * k,

if i * k.

(All)

(AI2)
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Therefore,

ief- k, i;;:' 1, (A 13)

(AI4)

In

N k= \ ' P;¢k = PO¢k + Pk¢k = iPk
.i 0

and the proof is complete.
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